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1. Introduction 
 

The second expedition (X2) to Boolardy to work on the 32T system focused on testing two new 
pieces of the signal path with one tile: the newly redesigned beamformer, and a prototype 
receiver system.  This full system was used to acquire a zenith drift scan for nearly 24 hours in 
order to test the effects on the system temperature of the new analog components.  In addition, a 
separate 20-hour zenith drift scan was acquired by replacing the prototype receiver system with 
the Acqiris spectrometer.  This configuration also tested the contribution of the new beamformer 
to the system temperature, but while providing a configuration similar to that used in X1 (which 
also used the Acqiris spectrometer).   

In this document, I will present the derived system temperature values from the Acqiris 
measurement configurations.  The method of deriving the system temperatures used here is 
identical to that used in X1 (see mwa-lfd memo: Analysis of Drift Scans From 32T-X1 and 
Characterization of System Temperature).  In particular, a canonical model of the antenna tile is 
used that does not take into account interactions between the dipole elements, and the sky model 
is simply based on a power law scaling of the Haslam et al. (1982) map.  Future drift scan 
analyses will utilize more accurate antenna models, as well as the improved method of Angelica 
de Oliveira Costa (http://space.mit.edu/home/angelica/gsm/) for interpolating sky maps to the 
observed frequencies.   

Unfortunately, the utility of the new drift scans from X2 is somewhat compromised due to the 
(unavoidable) timing of the measurements.  The measurements were acquired between 
December 16 and 18, 2007 (UTC).  During mid-December, the sun and Galactic center transit at 
nearly the same time.  Thus, the amplitude of primary peak in the drift scans, typically due to the 
Galactic center transiting alone, is due during this period to the combined Galactic and solar flux.  
This makes is difficult to separate the two contributions (assuming the flux of the sun must be fit 
and is not known ahead of time) and to produce an accurate estimate of the gain and system 
temperature of the instrument.    

The data files for the full tile-beamformer-receiver system were provided by Anish Roshi (see 
http://www.rri.res.in/rrimwa/X2/X2DRdriftscan/).  The data for the Acqiris measurements were 
provided Jamie Stevens (see http://www-ra.phys.utas.edu.au/X2_DATA/). 

http://space.mit.edu/home/angelica/gsm/
http://www.rri.res.in/rrimwa/X2/X2DRdriftscan/
http://www-ra.phys.utas.edu.au/X2_DATA/


For the Acqiris data, the time stamps in the data file were found to be approximately 12 minutes 
behind the true time (based on aligning the measured and modeled drift scans by eye).  The time 
stamps were corrected before processing the data. 

Figures 1 through 6 show the results of the Acqiris drift scans.  Only the measurements labeled 
as polarization 1 in the data files are shown in this document because those labeled as 
polarization 2 appeared to be noisier and gave less robust (but similar) constraints.  It is not 
known at this time whether polarization 1 was connected to the north-south or east-west aligned 
dipoles.  For this analysis, I assumed that polarization 1 was connected to the north-south 
dipoles, as it was in X1. 

2. Attempting to Account for the Solar Flux 
 

Since the contribution of the solar flux was a significant complication in these data, three 
different assumptions for the solar flux were treated in the analysis:   

 Treatment #1:  The system temperature is derived by allowing the solar contribution 
to be fit as a (frequency-dependent) parameter in the model (as it was for the X1 drift 
scans).  The results of this treatment are shown in Figure 1. 
 

 Treatment #2:  The system temperature is derived assuming that the solar flux is a 
frequency-constant S = 105 Jy.  The results of this treatment are shown in Figure 2. 
 

 Treatment #3:  The system temperature is derived assuming no solar flux (S = 0 Jy).  
The results of this treatment are shown in Figure 3. 

 
The Tsys values from the three treatments span a significant range, from bad (in Figure 2) to 
acceptable (in Figure 1) to too good to be true (in Figure 3).  Which is correct (or at least most 
likely)?   

It turns out that increasing the prescribed flux of a fixed solar contribution in our model causes a 
systematic lowering of the gain estimate of the instrument and a systematic elevation of the Tsys 

estimate.  The reason for this is that a drift scan based on only the solar contribution would fall 
nearly to zero away from peak transit, whereas a drift scan including the Galactic contribution 
falls only to the cold sky temperature.  Thus, when more of the peak is accounted for with the 
sun, the Tsys offset must increase to get the baseline (non-transit) values to match the cold sky 
temperatures.  At the same time, the gain must be decreased so that the peak transit value is still 
fit correctly.  So, by setting the solar flux to S = 0 Jy (as in Treatment #3), we can find a 
constraint on Tsys guaranteed to be a lower limit.  And by setting the solar flux to a large value 
(such as S ≥ 105 Jy, as in Treatment #2) we can find an upper limit on Tsys.  Similarly, the inverse 
is true of the gain.   

According to Frank Briggs (cite?), the typical (quiet) solar flux is approximately 105 Jy at 300 
MHz, falling with frequency to about 104 Jy at 100 MHz.  (Note: It is important to stress that 



these typical fluxes are for a quiet sun and could be much larger if there is any solar activity.)  
Nevertheless, I have used 105 Jy (regardless of frequency) as a fixed solar flux level to set a 
reasonable upper limit on Tsys.  This is justified based on the derived solar fluxes from X1 (see 
[mwa-lfd memo #3, Figure 8]).  Further confirmation that the true solar flux is below this level 
over most of our frequency range comes from Figure 4, which displays the derived solar fluxes 
for Treatment #1 and matches well with X1 values in [mwa-lfd memo #3, Figure 8].  Figures 7 
and 8 also illustrate that the derived values of Tsys and gain from Treatment #1 fall within the 
bounds set by Treatments #2 and #3. 

All of this tends to give me more confidence than I originally had in the estimates resulting from 
Treatment #1 (Figure 1).  Whether this is sufficient to determine if the new beamformer used in 
X2 has a better (or worse) impact on the system temperature than the Early Deployment-era 
beamformer used in X1 is difficult to say and I leave it to others to decide. 

  



Figure 1. Tsys derived from polarization 1 of the drift scan acquired with Acqiris spectrometer 
during X2, December 17-18, 2007 (UTC).  The solid black line with error bars is the “receiver” 
component of the system temperature derived from the measurements.  The error bars give the 
95% confidence interval.  The dotted blue line is an estimate of a cold sky temperature according 
to Tsky = 250 K * (f / 150 MHz)^(-2.5).  The solid blue line is the sum of the receiver and sky 
temperatures and provides an estimate of the full system temperature seen during an observation 
targeting a cold part of the sky.  For this plot, the solar flux was fit as an independent model 
parameter (see Figure 4 for the derived solar flux values). 



Figure 2.  Same as Figure 1 except, for this plot, the solar flux was constrained to 105 Jy 
(independent of frequency). The error bars are smaller here than in Figure 1 because there is no 
degeneracy between the (now-fixed) solar flux and the Galactic center flux.  Also, the error bars 
do not account for model error. 



Figure 3.  Same as Figure 2 except, for this plot, the solar flux was constrained to zero. 

 

  



Figure 4.  The derived solar flux values associated with the system temperatures shown in Figure 
1.  These values agree remarkably well with those found in X1 ([mwa-lfd memo #3, Figure 8]), 
when the sun transited a few hours before the Galactic center and the solar flux was, therefore, 
well constrained. 

  



Figure 5.  The relative gain values associated with the system temperatures shown in Figure 1. 

  



Figure 6.  The measured (black) and modeled (blue) drift scans associated with the system 
temperatures shown in Figure 1.  Many frequencies are plotted between roughly 75 and 300 
MHz in approximately 3 MHz increments.  Lower frequencies generally have higher amplitudes.  
Although not shown, the model fits to the measured drift scans for Treatments #2 and #3 appear 
very similar (they aren’t obviously any worse [or better] than these). 

 

  



Figure 7.  Comparison of system temperatures derived from the three treatments of the solar flux 
described in the text.  Note that assuming no solar flux sets a lower limit for the system 
temperature, whereas assuming a typical (quiet) solar flux of 105 Jy still results in a higher 
estimate of the system temperature than allowing the solar contribution to be fit as an 
independent parameter in the model.  A true upper limit would require setting the solar flux 
above the typical quiet level, but this appears unnecessary here, especially since 105 Jy is typical 
at 300 Mhz and 104 is typical at 100 Mhz.  Thus, I would assert that this is a fair upper limit.  I 
think that is supported by the “fit” solar flux (see Figure 4) falling being roughly consistent with 
the trend from 105 to 104 Jy as the frequency decreases over the band. 

  



Figure 8.  Similar to Figure 7, but showing the difference in absolute gain for the three 
treatments of the solar flux described in the text.  Here, assuming no solar flux results in an upper 
limit on the absolute gain. 

 

 

  



3.  Drift Scans with Prototype Receiver 
 
TBD. 
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